Skip to main content

Formation of two-dimensional MoS2 and one-dimensional MoO2 nanowire hybrids


Oxidation of two-dimensional (2D) transition metal dichalcogenides have received great interests because it significantly influences their electrical, optical, and catalytic properties. Monoclinic MoO2 nanowires grow along the zigzag direction of 2D MoS2 via thermal annealing at a high temperature with a low oxygen partial pressure. The hybrids of semiconducting 2D MoS2 and metallic 1D MoO2 nanowires have potential to be applied to various devices such as electrical devices, gas sensors, photodetectors, and catalysts.


Two-dimensional (2D) transition metal dichalcogenides (TMDs) have received great interests because of their outstanding electrical, optical, and catalytic properties. However, these properties are significantly influenced by oxidation. Moreover, heterostructure of transition metal oxides (TMOs) and TMDs are emerging as promising candidates for functional devices such as gas sensor, photodetector, and catalyst. Therefore, synthesizing multidimensional TMDs and TMOs hybrids are actively studied. (Molina-Mendoza et al., 2016).

Herein, we propose a new synthetic route for growth of 1D MoO2 nanowires and 2D MoS2 flakes hybrids via thermal oxidation of MoS2. Oxidation into MoO3 is common phenomenon in ambient conditions, but metallic MoO2 nanowires grow at a high temperature with a low oxygen partial pressure. The hybrids are investigated using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). TEM imaging was performed with a FEI Titan Cube G2 60–300 instrument operated at 200 kV with an image aberration corrector, and SEM imaging was performed with Hitachi High-Technologies S-4800.

In Fig. 1a, SEM image clearly shows that 1D nanowires are grown along the edges of 2D MoS2 flake, and the energy dispersive spectroscopy results in Fig. 1c confirm that they are molybdenum oxides. Moreover, Fig. 1d-e atomic-scale scanning TEM (STEM) images show that the molybdenum oxides are monoclinic MoO2 with distorted rutile structure. The growth direction of nanowires is [100] which is same as the results in previous papers. (Vogl et al., 2019) In addition, MoO2 nanowires are dominantly grown in six radial orientations at MoS2 as indicated by the arrows in Fig. 1a. These orientations are consistent with the zigzag directions of MoS2.

Fig. 1

(a) SEM, (b) STEM, and corresponding (c) EDS images of 1D MoO2 nanowires and 2D MoS2 hybrids. Atomic-scale STEM images (d) MoS2 and (e) MoO2 were taken from the marked position as a red box and blue box in (b), respectively

High contact resistance of TMDs is one of the key bottlenecks for applying TMDs to electrical devices. However, synthesizing the hybrids of semiconducting 2D MoS2 and metallic 1D MoO2 nanowires can be a solution. Metallic MoO2 nanowires can be adopted as an electrode of MoS2 directly, and hybridization between MoO2 and MoS2 might remove the Schottky barrier height and decrease the contact resistance. This simple synthetic route can be applied to many other 2D materials, and these 1D oxides-2D material hybrids can be used for not only electronic devices, but also catalytic, and optical devices.

Availability of data and materials

Not applicable.


  1. A.J. Molina-Mendoza, J.L. Lado, J.O. Island, M.A. Niño, L. Aballe, M. Foerster, F.Y. Bruno, Centimeter-scale synthesis of ultrathin layered MoO3 by van der Waals epitaxy. Chem. Mater. 28(11), 4042–4051 (2016)

    CAS  Article  Google Scholar 

  2. L.M. Vogl, P. Schweizer, M. Wu, E. Spiecker, Transform layered MoS2 into functional MoO2 nanowires. Nanoscale. 11, 11687–11695 (2019)

    CAS  Article  Google Scholar 

Download references


Not applicable.


This work was supported by IBS-R019-D1.

Author information




ZL supervised the project. ARY prepared the sample and took images and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zonghoon Lee.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoon, A., Lee, Z. Formation of two-dimensional MoS2 and one-dimensional MoO2 nanowire hybrids. Appl. Microsc. 49, 16 (2019).

Download citation


  • 2D material
  • Oxidation
  • MoS2
  • MoO2
  • Nanowire