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Abstract

Fluorescence in situ hybridization (FISH) is a technique to visualize specific DNA/RNA sequences within the cell
nuclei and provide the presence, location and structural integrity of genes on chromosomes. A confocal Whole
Slide Imaging (WSI) scanner technology has superior depth resolution compared to wide-field fluorescence
imaging. Confocal WSI has the ability to perform serial optical sections with specimen imaging, which is critical for
3D tissue reconstruction for volumetric spatial analysis. The standard clinical manual scoring for FISH is labor-
intensive, time-consuming and subjective. Application of multi-gene FISH analysis alongside 3D imaging,
significantly increase the level of complexity required for an accurate 3D analysis. Therefore, the purpose of this
study is to establish automated 3D FISH scoring for z-stack images from confocal WSI scanner. The algorithm and
the application we developed, SHIMARIS PAFQ, successfully employs 3D calculations for clear individual cell nuclei
segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard
break-apart, and variant patterns due to truncation, and deletion, etc. The analysis was accurate and precise when
compared with ground truth clinical manual counting and scoring reported in ten lymphoma and solid tumors
cases. The algorithm and the application we developed, SHIMARIS PAFQ, is objective and more efficient than the
conventional procedure. It enables the automated counting of more nuclei, precisely detecting additional abnormal
signal variations in nuclei patterns and analyzes gigabyte multi-layer stacking imaging data of tissue samples from
patients. Currently, we are developing a deep learning algorithm for automated tumor area detection to be
integrated with SHIMARIS PAFQ.
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Introduction
Fluorescence in situ hybridization (FISH) is a technique
employed fluorescently labeled probes to specifically
bind a target genome sequence and it is in research and
clinical use (Gozzetti and Le Beau 2000; Kajtar et al.
2006; Tanas et al. 2010; Hu et al. 2014). The technique
enables spatial localization of multiple signals within the
cell nuclei to provide the presence, location and

structural integrity of genes on chromosomes. Applica-
tions of FISH assay together with imaging techniques,
such as confocal and wide-field fluorescence are com-
monly in use. However, confocal imaging provides im-
ages with higher quality in terms of sharpness, contrast,
and noise when compared to wide-field fluorescence im-
aging (Xiujun Fu et al. 2017). Confocal imaging technol-
ogy increases optical resolution compared to traditional
wide-field fluorescent imaging by means of adding a
spatial pinhole placed at the focal plane of the lens to
eliminate the out-of-focus light (Wright et al. 1993).
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However, in wide-field fluorescence the entire specimen
of interest is exposed to the light source and the speci-
men axial dimension should be less than the wave-
optical depth to satisfy in-focus condition. This condi-
tion limits the portion of the tumor that can be scanned.
Other advantages of confocal fluorescence imaging

over wide-field fluorescence imaging are the elimin-
ation/reduction of background information from focal
plane and lower excitation energy as well as the ability
to perform serial optical sections with thick specimen
(which is critical for 3D tissue reconstruction). Applica-
tion of multi-layer Z-stack for 3D tissue reconstruction
with FISH assay enables the volumetric spatial
visualization of multiple genes signals with different
colors within the cell nuclei (Diaspro 2001; Xiujun Fu
et al. 2017). Since image acquisition is time-consuming
and subjective, whole slide imaging (WSI) technology
has been applied to automate the digital image acquisi-
tion from glass slide (Brachtel and Yagi 2012; Laurent
et al. 2013) with confocal scanner for FISH slide imaging
(Xiujun Fu et al. 2017).
Hybridized gene signals on FISH slides have extremely

small size and occupy tiny volumes inside the nuclei,
with average diameter of several hundred nanometers
(Hildenbrand et al. 2005; Xiujun Fu et al. 2017). Micros-
copy with high magnification objective is required in
order to visualize and distinguish these extremely small
size signals. The epifluorescence microscopy (wide-field
fluorescence microscopy), is commonly used to view
FISH slides to count the fluorescent signals for scoring
and diagnosis. Most WSI scanners designed for bright
field imaging and have 20× or 40× objectives for digital
fluorescence imaging with digitize slide optics equivalent
to epifluorescence microscopy (Cornish et al. 2012;
Laurent et al. 2013). A WSI fluorescence scanner has
been used with FISH slide of diffuse large B cells lymph-
oma cases with break-apart probes to detect MYC re-
arrangement (Laurent et al. 2013). It shown to be rapid,
robust, and highly sensitive. However, these scanners en-
counter difficulty in capturing the miniscule fluores-
cence signals from the nuclei when digitizing FISH slide.
A confocal WSI scanner recently used with high magni-
fication of 40× objective, producing final image with
high pixel resolution of 0.16 μm/pixel, shown to be cap-
able of acquiring each of the fluorescence signals from
the FISH slide (Xiujun Fu et al. 2017). Moreover, the ex-
tremely small size fluorescent signals which carry the
specific genetic information on FISH slides are distrib-
uted spatially inside the nuclei volume (Xiujun Fu et al.
2017); and therefore, could not be completely detected
by a single-layer scanning method.
The spatial arrangement of genes may reflect normal

or rearrangements in chromosomes (Roix et al. 2003;
Gue et al. 2005). However, genes visualization by

fluorescence probes cannot be interpreted accurately by
2D imaging strategy (due to missing information of the
Z-axis) when taking into account the various spatial lo-
cations of gene signals inside the cell nuclei. For ex-
ample, the diagnosis of gene translocation or fusion
using FISH break-apart probe requires to measure the
spatial distance between gene signals from different
channels to determine break-apart or co-localization (fu-
sion) of signals (Alpar et al. 2008; Cornish et al. 2012).
This spatial distance between different gene signals is es-
sential for the diagnosis. Here, we use confocal WSI in
analysis of FISH signals across Z-stack volume, which al-
lows to precisely localize and detect the spatial distance
between gene signals inside the cell nuclei volume. Yet,
it is impossible to precisely determine by eye the dis-
tance between gene signals within individual cell nuclei.
Even though FISH analysis is complicated, clinical cyto-
geneticists perform counting rely on their experience for
gene signal patterns detection and individual nuclei
morphology identification. Automated signal quantifica-
tion is objective and may improve productivity with
plentiful information. Therefore, we established auto-
mated 3D FISH scoring of z-stack images from confocal
WSI scanner. Our algorithm and application, SHIMAR
IS PAFQ, successfully employs 3D calculations for seg-
menting clear individual nuclei shapes, gene signals de-
tection, distribution of break-apart probe signal patterns,
including standard break-apart, and variant patterns due
to truncation, deletion, etc. The analysis was accurate
and precise when compared with grand truth clinical
manual counting and scoring reported in ten lymphoma
and solid tumors cases. Where EWSR1, MYC, BCL2 and
BCL6 break apart FISH probes used as a diagnostic
guide to determine treatment of lymphoma or solid tu-
mors patients (Sesques and Johnson 2017). The algo-
rithm we developed is objective and more efficient than
the current standard clinical procedure. It enables the
automated counting of more cell nuclei and detect add-
itional variations in gene signals abnormal patterns
within the nuclei than the conventional clinical counting
method. As well as accurately retrieve gene signals num-
ber and calculate 3D vector lengths between different
gene signals for each individual nuclei together with nu-
clei patterns classification.

Materials and methods
This study involves human subjects and is therefore ap-
proved by the institutional review board of Memorial
Sloan Kettering Cancer Center (MSKCC), New York,
NY, USA (IRB No. 18–216).

Tissue sectioning and FISH slides preparation
Information concerning lymphoma and solid tumors pa-
tients has been retrieved from MSKCC (Table 1). Tissue
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samples included in this analysis were formalin-fixed
paraffin-embedded (FFPE) blocks. FFPE tissue blocks is
suitable for clinical diagnostics due to the preservation
procedure were the morphology retain relatively intact
(Watters and Bartlett 2002; Kikuchi et al. 2016). There-
fore, FISH pretreatment protocol reduces formalin effect
to optimize the access of FISH probes to target DNA
(Watters and Bartlett 2002). Serial sectioning of FFPE
tissue blocks (Fig. 1) was used for Hematoxylin and
Eosin (H&E) or immunohistochemistry (IHC) staining in
order to characterize the region of interest (ROIs). The
AS-410 (Dainippon Seiki Co. LTD., Japan) automated

sectioning machine was used. A robotic arm that is
guided by a sensor, picks the tissue block to be sec-
tioned. The tissue block is charged positively, cooled,
and then humidified before it is sectioned. The positively
charged tissue block attaches to a negatively charged
carrier tape that transports and deposits it on a glass
slide moistened with water droplets (help spread the tis-
sue). The tissue slide heated (to minimize, if not totally
remove, wrinkles) and then drying. This H&E or IHC
slide was used for tissue orientation to ensure that the
correct area in an adjacent slide was selected for FISH
scoring. FISH analysis was performed on 4.0 μm section

Table 1 Dataset for FISH diagnosis of lymphoma and solid tumors patients

Case Diagnosis Break-apart probe Clinical result

1 Diffuse large B-cell lymphoma BCL6 Negative (−)

2 Follicular lymphoma BCL2 Negative (−)

3 Ewing’s sarcoma EWSR1 Positive (+)

4 Diffuse large B-cell lymphoma with plasmacytic differentiation MYC Negative (−)

5 In situ follicular neoplasia BCL2 Positive (+)

6 Focal diffuse large B-cell lymphoma and follicular lymphoma BCL6 Negative (−)

7 Diffuse large B-cell lymphoma BCL6 Positive (+)

8 Diffuse large B-cell lymphoma MYC Positive (+)

9 Diffuse large B-cell lymphoma MYC Negative (−)

10 Diffuse large B-cell lymphoma MYC Negative (−)

Fig. 1 Workflow of tissue sectioning, staining and scanning. Serial sectioning of FFPE tissue blocks was used for H&E or IHC staining in order to
characterize the region of interest. H&E and IHC slides were scanned at wide-field mode with 20× water immersion objective at a single layer.
ROIs on FISH slides were scanned at confocal mode with multiple layers (N = 7 layers at 0.6 μm interval) with 40× water immersion objective and
a final image resolution of 0.16 μm/pixel. Three filters were chosen: DAPI (blue), FITC (green) and TRITC (red). Showing in a dashed line frame: we
are currently developing a deep learning algorithm for an automated tumor area detection
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were tissue hybridized with break-apart probe to detect
gene rearrangements. FISH slides were prepared for ten
patients as follows. Slides were pretreated with buffer so-
lution as well as with hydrochloric acid to solubilizing
basic nuclear proteins, improving the accessibility of the
DNA. This method extracts the extracellular matrix of
proteins to improve accessibility of the probe to the cells
and preventing tissue autofluorescence (Watters and
Bartlett 2002). Pretreated tissue was digested with buffer
and protease for the purpose of breaking of peptide
bonds to affect signal quality by allowing access of the
FISH probes to the genomic target DNA and reduces
autofluorescence generated by intact proteins (Watters
and Bartlett 2002; Kikuchi et al. 2016). Protease diges-
tion was terminated by dehydrating slides in an alcohol
series and air-dried. FISH probes directly labeled with
fluorochromes are commercially available and ready to
use in red, green and blue fluorophores. Probes were ap-
plied to the tissue slide, cover slipped, sealed and de-
naturation was conducted and hybridized in a
humidified ThermoBrite system. Post hybridization
washing preformed at preheated temperature in order to
avoid hybrids of low homology. Slides were dehydrated
in an alcohol series. Air dried slides were counterstained
using Vectashield with 4′,6-diamidino-2-phenylindole
(DAPI) medium and cover slipped. Slides were stored at
− 20 °C. DAPI targeting the DNA in the cell nucleus
with blue fluorophore.
The FISH dataset includes patients who had been diag-

nosed with diffuse large B-cell lymphoma (DLBCL), fol-
licular lymphoma, diffuse large B-cell lymphoma (DLBCL)
with plasmacytic differentiation, in situ follicular neoplasia
and focal diffuse large B-cell lymphoma (DLBCL) with fol-
licular lymphoma. Patients were analyzed with BCL6,
BCL2, MYC, EWSR1 and MYC break apart probes as a
diagnostic guide to determine treatment. This probes set
includes the combinations of the following fluorophores:
fluorescein isothiocyanate (FITC) green fluorescent pro-
teins (GFP and EGFP), paired with tetramethylrhodamine
isothiocyanate (TRITC) red fluorescent protein (DsRed).

FISH slides scanning
As shown in Fig. 1, H&E as well as IHC were used for
the propose of tumor area detection. IHC interpretation
(demonstrates coexpression of markers) was useful when
follicular lymphoma/neoplasia were part of the differen-
tial diagnosis (Sesques and Johnson 2017): cases 2, 5 and
6. Slides were digitized with the pannoramic confocal
scanner (3DHISTECH Ltd., Budapest, Hungary). The
optical components of this scanner allow both bright
field and fluorescence imaging as well as both wide-field
and confocal modes are provided for fluorescence im-
aging. The scanner supports fully automated scanning
and semi-automated scanning. All the calculations in the

fully automated scanning to define the focus maps as
well as detection of the tissue regions were performed
by a control software. However, the semi-automated
scanning allows user to define the focus map as well as
the tissue regions to be scanned.
H&E and IHC slides were scanned at wide-field mode

with 20× water immersion objective at a single layer.
Scanned wide-field images were viewed, and several
ROIs from each slide were selected within the tumor
area of the tissue and reviewed by a pathologist. ROIs on
H&E and IHC slides were used in semi-automated mode
to define the ROIs on FISH slides. ROIs on FISH slides
were scanned at confocal mode with multiple layers for
both targeting genes and nuclei visualization. Multi-layer
scanning of N = 7 layers at 0.6 μm interval were per-
formed. Exposure time of the scans was set based on the
signal intensities of each channel with 40× water
immersion objective and a final image resolution of
0.16 μm/pixel (has a numerical aperture of 1.2). Three
filters were chosen in accordance with their fluorescent
excitation and the emission wavelengths of the probes
(Supplemental Table 1). The three filters are DAPI,
FITC and TRITC (as described above). The source of
the scanner excitation light is the Lumencor LED light
engine for the highest possible illumination power and
PCO edge cooled scientific CMOS camera combining
high sensitivity and low noise.

Image evaluation and analysis
WSI images were visually assessed and annotated in
CaseViewer provided by 3DHISTECH. The tumor areas
were semi-automatically detected on FISH slides as de-
scribed above. The annotated regions were exported into
tiled TIFFs (representation of each layer of the multi-
layer scanning). The exported tiled TIFFs were imported
into our algorithm for clear individual cell nuclei seg-
mentation and gene signals detection, quantification, co-
localization and 3D analysis as described below. Analysis
of gene signals corresponding to individual cell nuclei
were performed using our algorithm. The accuracy of
the analysis was compared with manual investigation as
assessed clinically by pathologist and cytogeneticists,
where overlapping red and green or fused yellow signal
represents co-localization, and separate red and green
signals indicate break-apart. Unlike the clinical manual
investigation, our new algorithm calculates the 3D vector
length between different channels. Thus, the diameters
of gene signals spots both in FITC and TRITC channels
were set as 0.6 μm and the cut-off 3D distance to define
break-apart gene signals was set to 1.2 μm (twice or
more than the gene signal spot diameter). The negative
diagnosis of patient relies on the mentioned relationship
of gene signals inside each individual nuclei, where 10%
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or less in counted individual nuclei shows abnormal sig-
nal patterns.

Algorithm description for 3D scoring of FISH using a
confocal WSI scanner
The algorithm is described in Fig. 2 and illustrated in
Fig. 3. 3D information of Z-stack images were exported
into tiled TIFFs data. Exported tiled TIFFs were
imported into our algorithm. We employed Gaussian fil-
ter to reduce noise. This is a non-linear low-pass filter
that removes high-frequency components. Gaussian
function is given as:

f xð Þ ¼ 1
.
σ

ffiffiffiffiffiffi
2π

p exp x−μð Þ2
�

2σ2

� �

where μ is mean and σ is variance.
In addition, we operated morphological opening and

closing transformation for noise removing, isolation of
individual elements and joining disparate elements as
well as finding of intensity bumps or holes. Opening ob-
tained by erosion followed by a dilation which results in
removing small objects on the foreground:

dst ¼ open src; elementð Þ
¼ dilate erode src; elementð Þð Þ

Closing is reverse of opening and obtained by dilation
followed by erosion. It is useful in closing small holes in-
side the objects:

dst ¼ close src; elementð Þ
¼ erode dilate src; elementð Þð Þ

A template matching technique was employed to seg-
ment DAPI stained clear individual cell nuclei. We used
the technique to find the statistically significant match
between an individual nuclei templates and the target
image (Gihan Kuruppu and Pinidiyaarachchi 2013). The
size of the source image I is W ×H where W and H
representing the width and height, respectively. The
source image I was compared with the overlapped
patches of the template image T (with width “w” and
height “h”). The template moves one pixel in the hori-
zontal or vertical direction on the image to be tested
and performs a comparison calculation. All possible lo-
cations to be matched with the template are stored in a
resultant matrix R given by (W – w + 1) × (H – h + 1)
which stores the coefficient value for each matched loca-
tion in pixel. We tested different approaches for nuclei
segmentation, some based on pixel by pixel intensity dif-
ferences to calculate the summation of squared (Ourse-
lin et al. 2001; Di Stefano and Mattoccia 2003). Other
approaches are more complex as they involve numerous
multiplication, division and square root operations (Wei
and Lai 2008). The different approaches described

bellow, where x and y are the source pixel position and
u and v are variable, shift component along x-direction
and y-direction respectively.
Square difference matching is defined as:

RSD x; yð Þ ¼
X
u;v

T u; vð Þ−I xþ u; yþ vð Þð Þ2

Normalized square difference is defined as:

RNSD x; yð Þ ¼
X

u;v
T u; vð Þ−I xþ u; yþ vð Þð Þ2

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
u;v
T u; vð Þ2 �

X
u;v
I xþ u; yþ vð Þ2

q

Cross correlation matching is defined as:

RC x; yð Þ ¼
X
u;v

T u; vð Þ � I xþ u; yþ vð Þð Þ

Normalized cross correlation matching is defined as:

RNC x; yð Þ ¼
X

u;v
T u; vð Þ � I xþ u; yþ vð Þð Þ

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
u;v
T u; vð Þ2 �

X
u;v
I xþ u; yþ vð Þ2

q

Correlation coefficient matching is defined as:

RCC x; yð Þ ¼
X
u;v

T 0 u; vð Þ � I 0 xþ u; yþ vð Þð Þ

where

T 0 u; vð Þ ¼ T u; vð Þ−1
.

w � hð Þ �
X
u;v

T u; vð Þ

I 0 xþ u; yþ vð Þ ¼ I xþ u; yþ vð Þ−1
.

w � hð Þ
�
X
u;v

I xþ u; yþ vð Þ

Normalized correlation coefficient matching is defined
as:

RNcC x; yð Þ ¼
X

u;v
T u; vð Þ � I xþ u; yþ vð Þð Þ

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
u;v
T u; vð Þ2 �

X
u;v
I xþ u; yþ vð Þ2

q

We found no significant differences between the six
template matching algorithms. Normalized correlation
coefficient and correlation coefficient methods are al-
most perfectly matching with the ground truth segmen-
tation. Normalized square difference, square difference,
normalized cross correlation and cross correlation
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Fig. 2 Algorithm description for 3D scoring of FISH using confocal WSI scanner. Steps are described for 3D calculations for clear individual cell
nuclei segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard break-apart, and variant
patterns due to truncation, and deletion, etc.
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method have minor variations compared to ground truth
segmentation. Also, there is no significant difference be-
tween the six template matching algorithms on process-
ing time. The normalized correlation coefficient method
performs slightly better in terms of processing time
compared to the correlation coefficient method.

Therefore, we selected the normalized correlation coeffi-
cient matching approach for clear individual nuclei
shapes segmentation (Fig. 3). In order to distinguish be-
tween the different segmented nuclei by different unique
identifier we used connected components of a hyper-
graph method. A connected component of a hypergraph

Fig. 3 Segmentation and coordinates representation of signals to determine 3D co-localization, break-apart and other variations in individual cell
nuclei patterns. a Volume and segmentation representation. Showing Z-stack images scanned with 7-layer and 0.6 μm interval at the same area.
Blue is DAPI channel for stained nuclei, green is FITC channel, and red is TRITC channel. b 3D representation of selected volume from panel A. c
Segmentation of clear individual cell nuclei (shown in gray) found at the volume. d Coordinates representation of segmented signals from the 7-
layers Z-stack. e 3D vector length calculation using the X, Y and Z coordinates extracted from the 7-layers Z-stack (to determine co-localization
and break-apart between FITC and TRITC signals) and classification of cell nuclei pattern. f Collection of segmented individual cell nuclei to show
variations in signals patterns (normal in orange frame, break in purple frame and other patterns in gray frame)
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is defined as any maximal set of vertices which are pair-
wise connected by a non-trivial path. A vertex of a
hypergraph considered to be an isolated vertex if it is
not contained in any edge of the hypergraph. If a vertex
of the hypergraph is contained in an edge of a particular
size, then it is not considered isolated from a specific de-
scription of a nuclei. Nuclei coordinates were extracted
and compared to assure 3D representation of individual
cell nuclei across the layers. The FITC and TRITC chan-
nels located inside each individual nuclei were converted
into coordinates representation and the high intensity
coordinate for each 3D gene signal was extracted by
comparing coordinate’s intensities. Figure 2 illustrates
the 3D coordinates comparisons we employed. Any se-
lected coordinate consisting of up to 24 neighboring (co-
ordinates) were compared with the selected one for our
data representation decisions.
Co-localization and break-apart gene signals where

calculated using network representation of 3D vector
lengths (between different gene signals) followed by
multiply comparisons of the 3D vector lengths (Fig. 2).
The network is a weighted network, with each edge
assigned a score, representing the 3D vector lengths of
the physical interaction between the two signals. Higher
score indicates larger 3D distance for the interaction.
The distance between two signals with a link in the net-

work is defined as FITC TRITC
��������!

, so that smaller

FITC TRITC
��������!

would correspond to shorter 3D distance
for the interaction. We calculated all possible pairs of
different signals directly linked in the network. A key
step is the calculations of the network distances. Given
the network distance between FITC signal and TRITC
signal, we then computed their 3D distance as:

FITC TRITC
��������! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XFITC−XTRITCð Þ2 þ YFITC−YTRITCð Þ2

þ ZFITC−ZTRITCð Þ2

vuut

where (XFITC, YFITC, ZFITC) are the coordinates represen-
tation of FITC signal at layer NFITC and (XTRITC, YTRITC,
ZTRITC) are the coordinates representation of TRITC sig-
nal at layer NTRITC. Given a list of all possible 3D vector
lengths for each individual cell nuclei, we made the se-
lection for interacting signals based on ranking distances
with non-repetitive signals (across selected paths). For a
given nuclei, the 3D vector lengths can be compared
with each other, but not across different nuclei. To make
them comparable across each individual nuclei, we first
sorted all 3D distances by ranking in increasing order.
Then, the top rank (sorter 3D distance) was selected as
an interaction, where we removed the lower weights
(longer 3D distances) calculated based on at least one
same signal as found in the top rank. The sorting
process continued without the top rank at each iteration

of which was saved as 3D interaction and until list of all
possible 3D vector lengths was completed. Distribution
of gene signals number and the calculated 3D vector
lengths were output together with nuclei patterns classi-
fication. Individual nuclei patterns were classified based
on number of co-localization and break-apart cases as
well as copy number of signals (non interacting signals).

Application description for 3D scoring of FISH using a
confocal WSI scanner
The application we developed, SHIMARIS PAFQ (Fig. 4),
includes several functions, such as 3D data uploading,
3D data deletion, viewing of counting and scoring results
(break-apart ratio, normal and multiple ratio, total num-
ber of counted nuclei, number of counted nuclei for
each pattern and number of discard nuclei), selecting
and removing an individual nuclei from the calculations,
z-stack image zooms and translations view (with the op-
tion to move across layers), export and view of clinical
report, quit the software, as well as assistance through
manual view. This approach was successful for analyzing
gigabyte multi-layer stacking imaging data of tissue sam-
ples. This application allows users to analyze the data by
pressing optional buttons. In addition, the application
responds to a successful function through message, and
if the application detects failure or an error, it provides
useful messages that assist users to make the necessary
correction. The application provides a friendly user in-
terfaces to analyze the data.

Results
FISH diagnosis with two or more different fluorescence
probes can be applied to one sample (Li et al. 2014,
2015) and relies on the number or the local relationship
of gene signals within an individual cell nuclei. The
current clinical analysis to interpret FISH signals by
manually counting and scoring of individual cell nuclei
under fluorescence microscope is time-consuming and
subjective. Clinical manual analysis is especially compli-
cated when applying multi-gene FISH assay together
with confocal WSI scanning (Z-stack information). Due
to the high level of complexity required for the 3D ana-
lysis we have developed an algorithm for quantification
and co-localization analysis of confocal WSI scanned
FISH images. The time to analyze volume of the entire
tumor is 3.4 min. The algorithm allows 3D analysis of
FISH Z-stack images with 2 distinct channels or more.
Number of clear individual cell nuclei and number of
gene signals in each channel were quantified automatic-
ally, as well as the 3D vector lengths between the differ-
ent channels. Distribution of data was output together
with individual nuclei patterns classification. The algo-
rithm was validated against ten clinical cases that were
analyzed manually by pathologist and cytogeneticists
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(Table 1). Figure 5 shows that the automated analysis is
significantly correlated with the validation procedures in
detecting the expected outcome of positive or negative
diagnosis for all the lymphoma and solid tumors pa-
tients. Moreover, the algorithm produces extensively
more information that the clinical manual scoring. The
algorithm performed the fastest calculations in a signifi-
cantly short time (3.4 min for entire tumor area) than
the procedure used for validation. The clinical manual
counting is of 100 individual nuclei for each patient,
while the automatic procedure was several times more
of individual nuclei for each patient. The automatic diag-
nosis procedure and the procedure used for validation
are significantly correlated in detecting nuclei pattern
for rearrangement with one co-localization and an add-
itional one FITC and one TRITC gene signals (typical

rearmament as shown in Fig. 5). However, the automatic
procedure can detect more variations in nuclei patterns
for rearrangement than the clinical manual scoring. Such
as one co-localization and an additional two or more
FITC gene signals with additional one TRITC gene sig-
nal or more than one co-localization and an additional
one FITC gene signal with additional two or more TRIT
C gene signals (non-typical rearmament as shown in Fig.
5). Non-typical rearmament patterns show features that
are different from the typical rearmament pattern. Non-
typical rearmament patterns seem to be important to de-
termine diagnosis, since in most of the cases the fraction
of nuclei counting in that group is significantly higher
than the typical rearmament nuclei counting.
Concerning the normal and multiple copy nuclei pat-

terns, automatic diagnosis procedure and the procedures

Fig. 4 Application description for 3D scoring of FISH using confocal WSI scanner. Flowchart showing application functions, such as 3D data
uploading, 3D data deletion, viewing of counting and scoring results, selecting and removing an individual nuclei from the calculations, z-stack
image zooms and translations view, export and view of clinical report, quit the software, as well as assistance through manual view
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used for validation are significantly correlated. Individual
nuclei with normal pattern is characterized with only 2
co-localizations, while multiple copy nuclei pattern is
characterized with more than 2 co-localizations (where
all signals are infusion). In most cases, normal pattern
counting is significantly higher than the multiple copy
pattern. Also, when compared with the clinical manual
scoring, the automatic procedure can detect other nuclei
patterns that cannot be classified as normal, multiple
copy or break apart. Other nuclei patterns show features
such as one or more co-localization and an additional
two or more FITC gene signals with no TRITC gene sig-
nals. The other nuclei patterns seem to be significant,

since many nuclei counted to be in that group compared
with the normal, multiple copy and break apart inci-
dences. While both the automatic procedure and the
procedures used for validation determined the same out-
come of positive or negative diagnosis, we found specific
differences in counting. This is due to differences in the
techniques used for counting and scoring.

Discussion
As described above, the 3D analysis for the organization
and alteration of chromosomes and genes by FISH using
a confocal WSI scanner is significant. The individual
genes visualized by fluorescence probes localized in

Fig. 5 3D FISH counting and scoring of individual cell nuclei with FITC (green) and TRITC (red) channels. Nuclei patterns are illustrated (left
column: normal, multiple copy, break apart or others) and results are shown for the automatic and the clinical manual procedure (nuclei counting
with percentage from total). Outcome of positive or negative diagnosis for the lymphoma and solid tumors patients are shown as well
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various locations within the cell nuclei, cannot be inter-
preted accurately by 2D imaging strategy, such as deter-
mine rearrangements, while the relative 3D position of
genes permits precise localization. Moreover, the current
clinical manual FISH counting and scoring under fluor-
escence microscope is time-consuming and subjective.
Application of multi-gene FISH analysis (with two or
more different fluorescence probes in one sample (Li
et al. 2014, 2015) together with 3D imaging, significantly
increase the level of complexity required for an accurate
3D analysis. Hence, we developed an automated algo-
rithm and application, SHIMARIS PAFQ, for 3D quanti-
fication, co-localization and abnormal signal patterns
analysis of confocal WSI scanned FISH z-stack images
with 2 distinct channels or more. The algorithm per-
forms 3D automatic analysis of FISH Z-stack images to
count the number of clear individual cell nuclei, the
number of gene signals and the 3D vector length be-
tween the different channels in each cell nuclei. Distri-
bution of signals and the 3D vector lengths were output
together with individual cell nuclei patterns classifica-
tion. Automatic calculations was conducted in a signifi-
cantly shorter time (3.4 min for the entire tumor area)
than the procedure used for validation, clinical manual
scoring. For all lymphoma and solid tumors patients, the
algorithm detected the same outcome of positive or
negative diagnosis as detected using the validation pro-
cedure. While nuclei patterns counting classified as nor-
mal is significantly higher than the multiple copy
pattern. The multiple copy pattern requires further in-
vestigation concerning the number of co-localizations
found within each cell nuclei. Yet, the algorithm counted
several times more of individual cell nuclei for each pa-
tient than the clinical manual counting. Since the
algorithm produced a relatively larger amount of infor-
mation than the clinical manual procedure, there are
specific differences in counting and the patterns de-
tected. The algorithm detected more variations in nuclei
patterns classified as rearrangement, while the combin-
ation between gene signals is open to any break apart
feature (Fig. 5, non-typical rearrangement). For example,
more than one co-localization and an additional several
FITC gene signal with additional of several TRITC gene
signals. That variations in the break apart features seem
to be important, since in most cases the fraction of that
group is significant when a positive diagnosis is deter-
mined. Also, the algorithm detected other nuclei pat-
terns that cannot be classified as normal, multiple copy
or break apart and many nuclei were counted to be in
this group which makes it significant. For example, only
one co-localization and no additional FITC gene signals
or TRITC gene signals. The variations found automatic-
ally in nuclei patterns requires further investigation that
may improve diagnosis.

We are currently developing a deep learning algorithm
for automated tumor area detection to be integrated
with SHIMARIS PAFQ (Fig. 1). The deep learning algo-
rithm is trained to identify tumor region compared with
that of the nontumor area.

Conclusion
We established automated 3D FISH scoring (multi-gene)
for z-stack images from confocal WSI scanner. The
standard clinical manual scoring for FISH is labor-
intensive, time-consuming and subjective. Application of
multi-gene FISH analysis alongside 3D imaging, signifi-
cantly increase the level of complexity required for an
accurate 3D analysis. Therefore, the procedure we devel-
oped successfully employs 3D calculations for individual
cell nuclei segmentation, gene signals detection and dis-
tribution of break-apart probes signal patterns, including
standard break-apart, and variant patterns due to trunca-
tion, and deletion, etc. The procedure enables the auto-
mated counting of more nuclei, precisely detecting
additional abnormal signal variations in nuclei patterns
than the conventional clinical counting method. As well
as analyzes gigabyte multi-layer stacking imaging data of
tissue samples from patients.
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