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Abstract 

The purple spaghetti‑eel Moringua raitaborua lives on the sandy or muddy bottoms of estuaries, which are subject 
to rapid and wide changes in salinity, pH, and osmoregulatory and hypoxic conditions due to the influx of organic 
materials from sources of freshwater. The species has adapted to hypoxic environments by developing a thicker 
epidermis with stratified polygonal cells, club cells, two types of mucous cells (goblet and, oval cells), stratified 
cuboidal cells and dermis with abundant blood capillaries. Among them, histological modification of thinner dorsal, 
lateral, and ventral body skin to include abundant capillaries and well‑developed dermal vascularization may provide 
cutaneous respiration, permitting survival in brackish waters with low levels of oxygen and variable environmental 
parameters.
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Introduction
Teleost species of fish exchange dissolved oxygen and 
carbon dioxide in aquatic environments through diverse 
respiratory adaptations such as gills (Park et  al. 2014), 
skin (Glover et al. 2013), intestines (Park and Kim 2001), 
labyrinth organs (Zaccone et  al. 2019), buccal cavi-
ties (Zaccone et  al. 2018), swim bladders or hydrostatic 
organs (Zaccone et  al. 2012), opercula (Summerfelt and 
Smith 1990), and lungs (Glass and Rantin 2009). Among 
them, the skin is a significant respiratory mediator that 
enables teleosts to absorb 5 to 30% of supplementary oxy-
gens (Nilsson et al. 2004; Kim and Park 2011). This per-
centage rises to 50% in amphibious mudskippers, which 
spend much of their lives in air (Graham 2011). Teleosts 
have histologically adapted skin to allow for cutaneous 
respiration through the following mechanisms (Beon 

et al. 2013; Glover et al. 2013; Kim 2022): a thicker epi-
dermis with diverse gland and large cells; the presence 
of intraepithelial blood capillaries; a defined lymphatic 
space at the basal layer of epidermis; well-vascularized 
connective tissue, an absence of scales; and other specific 
multicellular adaptations related to gas exchange.

The purple spaghetti eel Moringua raitaborua, which 
has an elongated and stubby body migrates from freshwa-
ter to seawater habitats in tropical zones in Nepal, India, 
Bangaladesh, and Philippines as they mature, and is most 
often found burrowed in the muddy bottoms of estuar-
ies (Menes et al. 2010; Kottelat 2013; Behera et al. 2021). 
In general, coasts and estuarine zones have hypoxic 
water (2.8 mg  O2  L-1 or lower) caused by excessive nutri-
ent runoff, algal blooms, and stagnant water during dry 
season (Zhang et al. 2013; Mishra 2020). With such envi-
ronmental conditions, brackish water–dwelling fishes are 
exposed to considerable skin stress that requires physi-
ological tolerance of rapid changes in salinity, dissolved 
oxygen levels, pH, and water volume (Hu and Cai 2013; 
Robbins and Lisle 2018). While researching the histol-
ogy of fishes inhabiting intertidal pools and estuarine 
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standing water, dermal vascularization (as in Rhinogobius 
brunneus and Tridentiger brevispinis) was found in the 
skin of M. raitaborua (Kim 2022; Kim et al. 2022). This 
study aims to describe the skin structure and analyze the 
morphometry of the epidermal thickness and diffusion 
distance of M. raitaborua, along with their relevance to 
cutaneous respiration.

Materials and methods
Specimen collection
Five adult M. raitaborua individuals (20.2, 24.6, 28.3, 
28.5, 32.0 cm in standard length, respectively) were pur-
chased at a fish market (Aquapro) after being imported 
from India on December 16, 2021. For examination by 
light microscopy, the specimens were fixed in a 10% neu-
tral buffered formalin solution at pH 7.4 for 1  day after 
receiving 0.05% tricaine methanesulfonate (MS-222, 
Sigma, St. Louis, MO, USA) as anesthesia in the labora-
tory. The experimental procedures strictly followed the 
rules of Jeonbuk National University Institutional Ani-
mal Care and Use Committee for animal ethics (License 
Number: CBNU-2023-00060).

Microscopic investigation
Each skin region (operculum, dorsal body, lateral body, 
ventral body; Fig.  1) of M. raitaborua specimens fixed 
with formalin solution was dissected to approximately 
0.5  cm2, respectively. Each tissue was processed through 
an ascending series of concentrations (50–100%) of alco-
hol for 1  h, cleared with xylene, and then embedded in 
ordinary paraffin at 65 ℃. The paraffin-embedded tissue 
blocks were serially sectioned at 5  cm intervals with a 
microtome (Jung Histocut, model 820-II, Leica, Wetzlar, 
Germany) and mounted on microscope glass slides. Each 
section was then deparaffinized in xylene, dehydrated 

through descending alcohol concentrations (100–50%), 
and stained with hematoxylin and eosin (H&E) and Mas-
son’s trichrome to confirm blood capillaries, connective 
tissue, basement membranes, and specific cells. Images 
of stained tissues were acquired with a light microscope 
(Imager A1, Carl Zeiss, Germany) and analyzed in Axio 
Vision (LE REL. 4.5, Carl Zeiss).

Statistical analysis
A regional comparison of epithelial thickness and diffu-
sion distance (the shortest distance from a capillary to 
the skin’s surface) of each skin sample was performed 
using PASW SPSS statistical software (SPSS version 18.0, 
IBM, Armonk, NY, USA). The normality and homogene-
ity of variance for all samples was verified by Kolmogo-
rov–Smirnov or Shapiro–Wilk test and Levene’s test 
(P > 0.05). One-way analysis of variance (ANOVA) with 
Tukey’s honestly significant difference test was used to 
compare the mean of data for epithelial thickness and 
diffusion distance. An analysis of covariance (ANCOVA) 
was utilized for statistical analysis of diffusion distance 
based on covariate epithelial thickness. The Pearson cor-
relation coefficient was used to determine the positive 
linear association between two factors.

Results
Histology
The skin of M. raitaborua individuals was classified into 
two main parts, the epidermis (ED) and dermis (DM), 
which are separated by a basement membrane (Figs.  2 
and 3).

The epidermis consisted of the outermost surface layer 
(OS), stratum spinosum (SS), and stratum germinativum 
(SG) (Fig. 2A). The OS is an upper region built of strati-
fied polygonal cells (SPC). The SS is a thicker region with 

Fig. 1 The photograph of Moringua raitaborua. Each number indicates sectioned regions of the skin. The bar indicates 10 cm. ①, operculum; ②, 
dorsal body; ③, lateral body; ④, ventral body
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Fig. 2 Histological characteristics of the operculum and dorsal body skin of Moringua raitaborua, stained with Hematoxylin and Eosin (A and C), 
Masson’s trichrome (B and D). A and B, the operculum consisting of the epidermis (ED) having the outermost surface layer with stratified polygonal 
cells (SPC), the stratum spinosum with club cells (CC), two types of mucous cells  (MCI and  MCII), and the stratum germinativum (SG) with stratified 
cuboidal cells (SCC), the dermis (DM) having the stratum laxum (SL) with blood capillaries (yellow asterisk) and the stratum compactum (SC); C 
and D, the dorsal body having ED with SPCs, CCs,  MCI,  MCII, SCCs and DM having SL with abundant blood capillaries. All bars indicate 50 μm

Fig. 3 Histological characteristics of the lateral and ventral body skin of Moringua raitaborua, stained with Hematoxylin and Eosin (A and C), 
Masson’s trichrome (B and D). A and B, the lateral body consisting of the epidermis (ED) with stratified polygonal cells (SPC), club cells (CC), two 
types of mucous cells  (MCI and  MCII), stratified cuboidal cells (SCC) and the dermis (DM) with blood capillaries (yellow asterisk); C and D, the ventral 
body consisting of ED with SPC, CC,  MCII, SCC and DM with blood capillaries. All bars indicate 50 μm
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diverse multi-cells such as club cells (CCs), and mucous 
cells (MCs). The SG consisted of a single basal layer of 
stratified cuboidal cells (SCCs) at the bottom of the ED. 
The SPCs had a polygonal cell with a violet nucleus and 
faint cytoplasm when stained with H&E, and a purple 
nucleus and weak blush cytoplasm when stained with 
Masson’s trichrome (Figs.  2A–C and 3). The CCs had a 
wide cylindrical body with small violet nucleus and pink 
cytoplasm by H&E and small violet nucleus and faint 
cytoplasm by Masson’s trichrome, and constituted most 
of the SS in the dorsal body, lateral body, and ventral 
body (Figs.  2 and 3). The MCs were classified into two 
types of unicellular gland cell  (MCI and  MCII).  MCI was 
an elongated tubular cell extending from the basement 
membrane to the surface and showed an upper part (pur-
ple with H&E and blush with Masson’s trichrome) and 
a reddish lower part of the cell body and the basal posi-
tion of nucleus. These were more abundant and larger 
in the operculum than in other skin regions (Fig.  2  A). 
 MCII had a flattened nucleus at the cell bottom and wide 
cytoplasm (hazy color with H&E and blush with Mas-
son’s trichrome) (Figs.  2A, B, and D and 3B, C, and D). 
The SCCs were small but densely arranged cells on the 
basement membrane, with a larger nucleus and narrower 
cytoplasm (Fig. 2).

The DM comprised the SL and SC. The dermis con-
tained a few capillaries, with one to four blood cells just 
below the basement membrane in the operculum (Fig. 2A 
and B), and featured well-developed vascularization, with 
numerous blood cells among dermal collagen fibers the 
dorsal, lateral, and ventral body (Figs. 2C–D and 3).

Morphometry
Measurement of epithelial thickness revealed a 
regional difference: the operculum was the thick-
est (mean = 315.4 ± standard deviation [SD] = 24.7; 
range = 258.5–358.0), with the lateral body (241.9 ± 30.6; 
187.9–295.2) and dorsal body (238.0 ± 15.1; 216.8–283.0) 
exhibiting similar values, and the ventral body was the 
thinnest (191.9 ± 32.1; 139.1–263.1). These measure-
ments showed a highly significant difference in epithelial 
thickness (one-way ANOVA, df = 3, f = 111.457, p < 0.001; 
Fig.  4A). The diffusion distance also included a relative 
difference between four regions: the operculum was asso-
ciated with the highest value (346.1 ± 32.0; 257.3–409.2), 
followed by the lateral body (262.9 ± 30.3, 216.5–319.7), 
dorsal body (258.1 ± 23.5; 208.7–309.5), ventral body 
(208.1 ± 38.7, 148.8–281.5). These showed a highly signifi-
cant difference in diffusion distance (one-way ANOVA, 
d f = 3, f = 98.259, p < 0.001; Fig.  4A). The diffusion dis-
tance between the four skin regions was strongly affected 
by epithelial thickness as a covariate (ANCOVA, df = 3, 
f = 13.671, p < 0.001; Fig. 4B). The two factors were highly 

and positively correlated in the four skin regions (Pear-
son’s correlation coefficient, r = 803, p < 0.001; Fig. 4B).

Discussion
Fish skin is a multi-functional envelope that acts as physi-
cal barrier to potential bacterial infections (Zhang et al. 
2021), abrasion (Lv et al. 2023), sensory system (Mogdans 
2019), color expression (Vissio et  al. 2021), much more 
freedom motion (Clark et  al. 2016), acid-base regula-
tion (Perry and Gilmour 2006), excretion of nitrogenous 
compounds (Wood 1993), and osmoregulation (Marshall 
2012). Such physiologies are well-supported by the ED 
with SPCs, CCs, MCs, and SCCs confirmed in this study. 
Among them, two unicellular secretary glands, CCs and 
MCs, not only produce alarm-clue chemicals (proteins 
and pheromones such as serotonin and 5-HT) with cyto-
plasmic membrane breakage for antipredator response 
in conspecifics (Zaccone et  al. 1990; Carreau-Green 
et al. 2008; Manek et al. 2013) but also engage in defense 
against pathogens that can penetrate the skin (Pollock 
2011) and repair damaged tissues with chondroitin and 
keratin (Damasceno et  al. 2012). They can help oxygen 
penetrate deeper toward the dermal matrix of connec-
tive tissue due an abundance of water and acidophilic 
proteins of a positive ion (Jakubowski 1958; Mittal and 
Munshi 1971; Park 2002). These reports indicate that 
CCs and MCs of M. raitaborua may constitute a cytolog-
ical delivery system for efficient oxygen diffusion or stor-
age in cutaneous respiration, and act as a skin protector 
against harmful substances a fish migrating can expect in 
encounter in contaminated habitats.

M. raitaborua also had two types of MCs: elongated 
 (MCI, ii) and oval  (MCII). The elongated  MCI is a goblet 
mucous cell due to its nucleus position, cell morphology, 
and histochemistry, and has been reported in the skin of 
other teleosts (Rakers et al. 2011; Mohamed et al. 2020; 
Abolfathi et al. 2022). Fishelson (1996) noted that abun-
dant goblet cells of the skin of the marine eel Siderea 
grisea skin are relevant to skin-damage reduction during 
movement on a hard substrate and the initiation of dig-
ging into the substrate. Elsheikh (2012) confirmed that 
goblet cell secretion of Oreochromis niloticus protects 
the epidermis of the buccal cavity from physical abra-
sion during feeding. These findings support the presence 
of more  MCIs of the operculum of M. raitaborua, which 
feeds on burrowing fish or invertebrates living in the sand 
and dig into bottom substrate using its head as ecology, at 
least in genus Moringua (Smith 1997).

Many amphibious fishes exhibiting cutaneous res-
piration contain a thicker ED produced by large secre-
tary cells as follows: 38.4–156.8 μm thick, a freshwater 
goby Rhinogobius brunneus (Kim et  al. 2022); 35.4–
150  μm, a trident goby Tridentiger brevispinis (Kim 
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2022); 136.3–195.5  μm, a mud loach Misgurnus miz-
olepis (Park et  al. 2001); 146–495 μm, a torrent catfish 
Liobagrus mediadiposalis (Park et  al. 2003a); 59.0  μm 
297.0 μm, an eel goby Odontamblyopus lacepedii (Park 
et  al. 2003b), M. raitaborua (246.8 ± 51.5  μm, 139.1–
358.0; mean ± SD, range) with CCs and MCs. Reduced 
diffusion distance of the skin also is strong evidence that 

confirms more rapid gas-exchange, as measured by an 
ascending vascularization that represents two histologi-
cal categories in its occurrence position (Glover et  al. 
2013): (i) intraepidermal blood capillaries of the out-
ermost surface layer (Mastcembellus pancalus with a 
mean diffusion distance of 34.0 μm; Mittal and Munshi 
1971; Periophthalmus modestus with a mean of 1.4 μm; 

Fig. 4 Regional comparison of epithelial thickness and diffusion distance of Moringua raitaborua skin. A line and bar graphs for relative difference 
between four skin regions (operculum, dorsal body, lateral body, ventral body); B a scatterplot graph showing a correlation between epithelial 
thickness (x‑axis, n = 20) and diffusion distance (y‑axis, n = 20) in each skin region. Red circle, operculum; yellow triangle, dorsal body; X, lateral body; 
blue diamond, ventral body. DD, diffusion distance; MED, a measured value of epithelial thickness and diffusion distance



Page 6 of 7Kim  Applied Microscopy           (2023) 53:10 

Park et al. 2000), the middle layer (Liobagrus mediadi-
posalis with a mean of 169 μm; Park et  al. 2003a), and 
the stratum germinativum (Rhinogobius brunneus with 
a range of 35.0–202.6 μm; Kim et al. 2022), and (ii) well-
developed dermal vascularization among collagen fibers 
of SL just below the basement membrane (Pseudoba-
grus brevicorpus, with a range of 19.9–399.4  μm, Park 
et  al. 2010; abd Tridentiger brevispinis, with a range of 
51.4–216.9, Kim 2022) (Kazerouni and Khodabandeh 
2010; Romano et al. 2019). In this study, M. raitaborua 
showed reduced diffusion distance (268.8 ± 58.7  μm), 
which was similar to and affected strongly by ET (covar-
iance, P < 0.001) in all skin regions, indicating that cap-
illaries of M. raitaborua can get close to the basement 
membrane of the SL. For such a histological character, 
Park et al. (2003a) suggest that a reduced diffusion dis-
tance (mean = 169 μm, range = 22.5–220) by dermal vas-
cularization as well as intraepidermal blood capillaries 
in L. mediadiposalis are meaningful histological modifi-
cations for fish that enable them to survive in frequently 
hypoxic habitats. Ba-Omar and AI-Riyami (2009) 
reported that rich dermal vascularization below the epi-
dermis and in the dermis of an amphibious benny, Isti-
blennius edentulous, facilitates efficient gas exchange for 
cutaneous respiration. Thinner dorsal, lateral, and ven-
tral bodies of M. raitaborua with reduced diffusion dis-
tance by ascending blood capillaries and well-developed 
vascularization may be collectively represent major skin 
region for gas-exchange and the supply of deficient oxy-
gen through cutaneous respiration.

Conclusions
The purple spaghetti eel M. raitaborua has a thicker epi-
dermis (the operculum was the thickest, at 315.4 ± 24.7, 
258.5–358.0 [mean ± SD, range], the ventral body was 
the thinnest at 191.9 ± 32.1, 139.1–263.1) with strati-
fied polygonal cells, club cells, and two types of mucous 
cells: elongated  MCI  goblet cells feature an upper part 
(purple with H&E staining and blush with Masson’s tri-
chrome staining) and a reddish lower part of the cell 
body, and the basal position of nucleus, whereas  MCII 
oval cells include a flattened nucleus at the cell bottom 
and wide cytoplasm (hazy color with H&E staining and 
blush with Masson’s trichrome staining), and stratified 
cuboidal cells. In particular, the dermis just below base-
ment membrane in dorsal body, lateral body, and ventral 
body regions have abundant blood capillaries and well-
developed dermal vascularization. These findings dem-
onstrate the eel’s adaptation to cutaneous respiration to 
obtain supplementary oxygen in hypoxic muddy regions 
of brackish-water estuaries.
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